Unsupervised analysis of MS images using Cardinal
نویسنده
چکیده
2 Analysis of a pig fetus wholy body cross section 1 2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Peak picking and alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Visualizing the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.1 Visualization of molecular ion images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.2 Exploratory analysis using PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Spatial segmentation using spatially-aware k-means clustering . . . . . . . . . . . . . . . . . . . . . . 4 2.3.1 Plotting the spatial segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2 Plotting the mean spectra of the segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Spatial segmentation using spatial shrunken centroids clustering . . . . . . . . . . . . . . . . . . . . 6 2.4.1 Plotting the spatial segmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.2 Plotting the (shrunken) mean spectra of the segments . . . . . . . . . . . . . . . . . . . . . 9 2.4.3 Plotting and interpreting the t-statistics of the m/z values . . . . . . . . . . . . . . . . . . . 9 2.4.4 Identifying the number of segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.5 Interpretting the spatial segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملProbabilistic Segmentation of Mass Spectrometry (MS) Images Helps Select Important Ions and Characterize Confidence in the Resulting Segments*
Mass spectrometry imaging is a powerful tool for investigating the spatial distribution of chemical compounds in a biological sample such as tissue. Two common goals of these experiments are unsupervised segmentation of images into newly discovered homogeneous segments and supervised classification of images into predefined classes. In both cases, the important secondary goals are to characteri...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016